A卡以太坊dag机制最近什么情况以太坊dag问题简介
最近有一位之前找过币圈网的用户问了我们小编的一个问题,我相信这也是很多币圈朋友经常会疑惑的问题:A卡以太坊dag机制相关问题,以太坊dag问题相关问题,带着这一个问题,让专业的小编告诉您原因。
以太坊技术系列-以太坊共识机制
区块链的特点之一是去中心化。也就是节点会分布在各个地方组成分布式系统。各个节点需要对1个问题达成一致,理想情况下,只需要同步状态即可。
如上图所示 B节点将a=1= a=2的状态同步给 ACDE四个节点,这时系统中状态变为a=2, 但如果其中有恶意节点 AE 收到通知后把a=1=a=3修改为错误的节点,这个时候大家的状态就不一致了,此时需要共识机制使系统中得到1个唯一正确的状态。
如上面说到分布式系统存在恶意节点导致系统中状态不一致的情况有1个比较著名的虚拟问题-拜占庭将军问题。
拜占庭将军问题是指,N个将军去攻打一座城堡,如果大于一定数量的将军同时进攻则可以攻打成功,如果小于则进攻失败。将军中可能存在叛徒。
这个时候有2种情况
1.如果2个叛徒都在BCDE中,那么共识算法需要让其余2个将军听从A的正确决策进攻城堡。
2.如果A是1个叛徒,共识算法需要让BCDE中剩余的3个忠诚将军保持一致。
这个问题有很多种解法,大家有兴趣可以自行查阅(推荐学习PBFT),我们重点来看看以太坊中目前正在使用的Nakamoto 共识和将要使用的 Casper Friendly Finality Gadget共识是如何解决拜占庭将军问题的。
说到Nakamoto共识和Casper Friendly Finality Gadget共识可能大家不太熟悉,但他们的部分组成应该都比较熟悉-POW(工作量证明)和POS(权益证明)。
POW或POS称之为Sybil抗性机制,为什么需要Sybil抗性机制呢,刚刚我们说到拜占庭将军问题,应该很容易看出恶意节点越多,达成正确共识的难度也就越大,Sybil攻击就是指1个攻击者可以伪装出大量节点来进行攻击,Sybil抗性是指抵御这种攻击能力。
POW通过让矿工或验证者投入算力,POS通过让验证者质押以太坊,如果攻击者要伪装多个节点攻击则必将投入大量的算力或资产,会导致攻击成本高于收益。在以太坊中保障的安全性是除非攻击者拿到整个系统51%算力或资产否则不可能进攻成功。
在解决完Sybil攻击后,通过选取系统中的最长链作为大家达成共识的链。
很多人平时为了简化将pow和pos认为是共识机制,这不够准确,但也说明了其重要作用,我们接下来分析pow和pos。
通过hash不可逆的特性,要求各个矿工不停地计算出某个值的hash符合某一特征,比如前多少位是000000,由于这个过程只能依赖不停的试错计算hash,所以是工作量证明。计算完成后其他节点验证的值符合hash特征非常容易验证。验证通过则成为成为合法区块(不一定是共识区块,需要在最长链中)。
以太坊中的挖矿算法用到2个数据集,1个小数据集cache,1个大数据集DAG。这2个数据集会随着区块链中区块增多慢慢变大,初始大小cache为16M DAG为1G。
我们先来看这2个数据集的生成过程
cache生成规则为有1个种子随机数seed,cache中第1个元素对seed取hash,后面数组中每个元素都是前1个元素取hash获得。
DAG生成规则为 找到cache中对应的元素后 根据元素中的值计算出下次要寻找的下标,循环256次后获得cache中最终需要的元素值进行hash计算得到DAG中元素的值。
然后我们再看看矿工如何进行挖矿以及轻节点如何验证
矿工挖矿的过程为,选择Nonce值映射到DAG中的1个item,通过item中的值计算出下次要找的下标,循环64次,得到最终item,将item中的值hash计算得到结果,结果和target比较,符合条件
则证明挖到区块,如果不符合则更换nonce继续挖矿。矿工在挖矿过程中需要将1G的DAG读取到内存中。
轻节点验证过程和矿工挖矿过程基本一致,
将块头里面的Nonce值映射到DAG中的1个item,然后通过cache数组计算出该item的值,通过item中的值计算出下次要找的下标,循环64次,得到最终item,将item中的值hash计算得到结果,结果和target比较,符合条件则验证通过。轻节点在验证过程中不需要将1G的DAG读取到内存中。每次用到DAG的item值都使用cache进行计算。
以太坊为什么需要这2个不同大小的数组进行辅助hash运算呢,直接进行hash运算会有什么问题?
如果只是进行重复计算会导致挖矿设备专业化,减少去中心化程度。因为我们日常使用的计算机内存和计算力是都需要的,如果挖矿只需要hash运算,挖矿设备则会设计地拥有超高算力,但对内存可以缩小到很小甚至没有。所以我们选用1G的大内存增加对内存访问的频率,增加挖矿设备对内存访问需求,从而更接近于我们日常使用的计算机。
我们看看在Nakamoto共识是如何解决拜占庭将军问题的。首先看看区块链中的拜占庭将军问题是什么?
区块链中需要达成一致的是哪条链为主链,虽然采用了最长链原则,但由于分叉问题,还是会带来拜占庭将军问题。
本来以太坊pow目标是抵抗51%以下的攻击,但如上图如果恶意节点沿着自己挖出的区块不断挖矿,由于主链上有分叉存在,恶意节点不需要达到51%算力就可以超过主链进而成为新的主链,为此以太坊使用了ghost协议给上图中的B1和C1也分配出块奖励,尽快合并到主链中,这样主链长度(按照合并后的总长度算,长度只是抽象概念,以太坊中按照区块权重累加)还是大于恶意节点自己挖矿的。
网络中的用户通过质押一定数量的以太坊成为验证者。每次系统从这些验证者从随机选择出区块创建者,其余验证者去验证创建出的区块是否合法。验证者会获得出块奖励,没有被选中的区块不进行验证则会被扣除一定质押币,如果进行错误验证则会被扣除全部质押币。
如上图,权益证明在每隔一定区块的地方设置一个检查点,对前面的区块进行验证,2/3验证者通过则验证通过,验证通过则该区块所在链成为最长合法链(不能被回滚)。
我们简化地只分析了权益证明本身,在以太坊中权益证明较为复杂的点在于和分片机制结合在一起时的运行流程,这部分会在后面单独将分片机制的一篇文章中详述。
本篇文章主要讨论了共识机制是解决分布式系统中的拜占庭将军问题,以及分析了以太坊中的共识机制一般包括最长链选择和一种sybil抗性机制(pow或pos)。重点分析了pow和pos的流程以及设计思想。后续将开始重点讨论智能合约的部分。
什么是DAG,DAG有发展前途吗?
DAG(Directed acyclic graph),有向无环图,是计算机领域一个常用的数据结构,因为独特的拓扑结构所带来的一些特性,经常被用到处理动态规划,导航中寻求最短路径,数据压缩等场景中。从15年开始,区块链概念被单拎出来,这之前区块链还只是比特币技术里的一个数据结构,中本聪白皮书里把block和chain连一起的时候也只是a chain of blocks 。随着以太坊去中心化计算机的概念提出来,很多人开始把以太坊称作区块链2.0,而比特币被归到了区块链1.0。至于区块链3.0,市场上为了抢夺区块链3.0的冠名权打的不可开交,没准会是DAG。
什么是DAG区块链技术
DAG全称是“有向无环图”,没有区块概念,不是把所有数据打包成区块,再用区块链接区块,而是每个用户都可以提交一个数据单元,这个数据单元里可以有很多东西,比如交易、消息等等。数据单元间通过引用关系链接起来,从而形成具有半序关系的DAG(有向无环图)。DAG的特点是把数据单元的写入操作异步化,大量的钱包客户端可以自主异步地把交易数据写入DAG,从而可以支持极大的并发量和极高的速度。同时,使用DAG技术的TrustNote还支持声明式智能合约,声明式的智能合约要表达的意思是可以直接按照用户想要的结果去写、去描述,以很简单的语言,让大家都能看懂的语言去描述他要干的事情。
截止到2017年年底,“高流量应用”越来越多,除了主流电商平台外,还有直播平台、P2P理财、今日头条、陌陌等崭露头角,如果“高流量应用”与DAG区块链技术结合,将会给行业带来哪些变革呢?除区块链自身的特点去中心化、分布式账本、不可篡改之外,DAG区块链技术不但可以支持高并发,结合双层共识机制,使用工作量证明共识算法,还能够防止“双花”问题。
那么,DAG如何支持高并发的呢?第一,数据不像比特币和以太坊一样强同步,而是弱同步,允许节点在同一时刻数据不一样,数据可以有一些微小的差别。第二,可以通过数据单元之间的引用来完成交易的确认,就是后面发生的单元去引用前面的单元,这样不需要我们把数据传给矿工,整个过程都是由自己去完成的,这个过程很快。DAG是解决高并发比较优美的方法,比起之前的闪电网络,还有其他一些方面,DAG有其先天优势。
再来看看DAG是如何防止“双花”?在有向图里如果能选出一个MainChain,这个时候会发现所有图里面的节点都可以用一种方法来给它做排序,把这个序号连接起来在一排,这张图将会变成跟区块链一样的序列结构,就是排完序的节点,而且每个节点是一个交易,而不是一个区块。所以,确定了主链,通过主链,可以形成全序。最后达到的结局就是在某一个逻辑状态里,交易还是被排序了,这是DAG最关键核心的部分。
“高流量应用”是随着节点数和交易数的增加平滑扩展,当这个节点数超过1亿或交易数超过并发100万时,DAG的特性刚好是交易越多越快,节点越多越快。
感谢您阅读本篇对A卡以太坊dag机制的详细介绍,如果你对以太坊dag问题还不够了解,想进一步学习关于A卡以太坊dag机制的知识,可以在本站首页搜索你想知道的!